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Abstract— Hamilton-Jacobi (HJ) Reachability offers a frame-
work for generating safe value functions and policies in the
face of adversarial disturbance, but is limited by the curse
of dimensionality. Physics-informed deep learning is able to
overcome this infeasibility, but itself suffers from slow and
inaccurate convergence, primarily due to weak PDE gradients
and the complexity of self-supervised learning. A few works,
recently, have demonstrated that enriching the self-supervision
process with regular supervision (based on the nature of the
optimal control problem), greatly accelerates convergence and
solution quality, however, these have been limited to single
player problems and simple games. In this work, we intro-
duce MADR: MPC-guided Adversarial DeepReach, a general
framework to robustly approximate the two-player, zero-sum
differential game value function. In doing so, MADR yields
the corresponding optimal strategies for both players in zero-
sum games as well as safe policies for worst-case robustness.
We test MADR on a multitude of high-dimensional simulated
and real robotic agents with varying dynamics and games,
finding that our approach significantly out-performs state-of-
the-art baselines in simulation and produces impressive results
in hardware.

I. INTRODUCTION

Zero-sum differential games provide a unifying framework
for modeling interactions between an ego robot and an
adversarial entity—whether that entity is a passive distur-
bance (e.g., wind, sensor noise) or an active agent (e.g., an
opponent robot or attacker). To ensure robustness, zero-sum
formulations assume that the other player or disturbance is
adversarial, i.e. the ego robot aims to maximize a reward
function (e.g., time to target, safety margin), while the
disturbance or adversary attempts to minimize it.

Hamilton-Jacobi (HJ) Reachability is a popular approach
for solving zero-sum differential games with respect to target
achievement and obstacle avoidance [1], [2]. HJ reachability
requires solving a partial differential equation (HJ-PDE) to
compute a value function; this value function implicitly
provides a) the optimal control policy for the robot and
adversary, and b) the reachable set: the set of states from
which a system can reach (or avoid) a target (or obstacle)
over time using these optimal policies. HJ reachability is
particularly well-suited to safety-critical applications due to
its ability to model worst-case scenarios in a game-theoretic
formulation [?].

HJ reachability has been applied to a broad range of
robotic systems, including collision avoidance for aerial ve-
hicles, multi-agent coordination, and motion planning under
uncertainty [1], [3]. However, classical approaches rely on
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Fig. 1: A graphical abstract of MADR and the robotic experiments.
In this work, we propose enriching self-supervised learning of HJ-
PDE’s, i.e. DeepReach, with supervision given by the best sampled
game rollout (top left), where the opponents policy is defined by
the current value approximation (top right). We demonstrate this
approach performs across games with general dynamics (bottom),
namely with TurtleBots, Drones and Humanoid experiments.

grid-based dynamic programming and scale poorly with state
dimension due to the curse of dimensionality [4]. This limits
their use to systems with fewer than six states in practice.

To address this challenge, learning-based approaches have
been explored for scalability. Methods such as DeepReach
[5] replace the grid with a function approximator trained to
satisfy the HJ-PDE in a physics-informed learning (PINN)
framework. This approach significantly improves scalability
and has been demonstrated on systems of 50 dimensions [6].

DeepReach has primarily focused on control-only cases at
high dimensions, with only limited work addressing robust-
ness or more complex dynamics [7], [8]. A few works have
demonstrated that introducing supervision greatly improves
the learned approximation. In [6], the Hopf formula is used
to solve a linearization of the game for a supervision loss,
however, this struggles with nonlinear or angular dimensions,
which frequently appear in robotics. More recently, [9]
employed sample-based Model Predictive Control (MPC) as
supervisory signal, finding that this significantly improves
performance in high-dimensions but is limited to the control-
only case.



A. Contributions

Our method, MADR, proposes solving zero-sum differen-
tial games using a value-only DeepReach approach combined
with adversarial MPC roll-outs. Our key insight is to define
the opponent’s policy through the current value gradient
approximation, which allows robust sampling of improved
ego policies and the associated optimal cost of their trajec-
tories. Unlike actor-critic methods, where policy performance
depends on simultaneous learning of both actor and critic,
our value-only approach ensures that high-quality policies
emerge directly from accurately-learned value functions. To
achieve this, we mitigate co-learning issues by collecting
separate datasets in which the sampling (and associated
adversarial gameplay under the current value gradient) occurs
for each agent individually. This enables robust learning of
a single value function for both players, leading to effective
policies in adversarial scenarios.

We empirically demonstrate that this value-informed ad-
versarial supervision improves both the fidelity and safety
margins of learned reachable sets, leading to better ro-
bustness against disturbances and adversarial agents. The
effectiveness of MADR is validated through extensive simu-
lation experiments and a variety of hardware demonstrations,
highlighting improved safety performance in complex, high-
dimensional systems exposed to significant disturbances or
adversarial players. In addition, we compare MADR against
other current approaches in head-to-head policy matchup
comparisons. Ultimately, our approach bridges the gap be-
tween the rigorous, theory-driven framework of HJ reacha-
bility and the practical use of optimal control to handle ad-
versarial or worst-case scenarios in real-world environments.

B. Related Work

Linear Quadratic Games (LQG) are a class of dif-
ferential games where multiple players aim to minimize a
quadratic cost function over time, subject to linear dynam-
ics, either cooperatively or non-cooperatively. In the non-
cooperative scenario, players often seek Nash equilibria,
which can be computed by solving coupled Riccati equa-
tions [10] in limited scenarios, but practically in iteratively
linearizations [11]. The cooperative case typically involves
joint optimization to minimize a shared cost function [12].
Recent advancements have extended LQGs to incorporate
uncertainties and stochastic disturbances, enhancing their
applicability to real-world scenarios [13]. However, they
remain relatively challenging in zero-sum settings and face
limitations when applied to complex dynamical systems,
where linearization of the dynamics can lead to significant
inaccuracies.

Model Predictive Control (MPC) is a model-based opti-
mal control strategy. At each timestep, it solves a constrained
optimization problem over a finite prediction horizon, a
method known as receding horizon control. MPC is well-
suited for safety-critical applications because it produces a
control sequence that is guaranteed by the model to satisfy
state and input constraints over the entire prediction hori-
zon [14]. However, MPC has two significant drawbacks: its

high computational burden and its sensitivity to model mis-
match. Sampling-based variants, such as MPPI [15], improve
robustness to model inaccuracies by evaluating thousands
of stochastic rollouts. Additionally, robust, stochastic, and
distributed formulations further enhance performance and
efficiency in uncertain environments [16].

Adversarial Reinforcement Learning (RL) formulates
control in uncertain environments as a two-player game,
where a controller learns to counteract worst-case distur-
bances or adversarial agents [17], [18]. This framework
improves robustness to unmodeled dynamics, environmental
perturbations, and intelligent opponents. Modern algorithms,
often based on actor-critic methods, enable scalable training
in high-dimensional systems. However, these approaches are
often brittle, as adversarial training can induce instability,
high variance, or convergence issues [19]. Additionally, the
reliance on additive payoffs in these methods makes them ill-
suited for safety-critical tasks, thus motivating the integration
of reachability-based value functions for learning in such
domains [20], [21].

ISAACS (Iterative Soft Adversarial Actor-Critic for
Safety) is a Safety Bellman based representative frame-
work that formulates safety-critical control as a zero-sum
game between a control policy and a disturbance pol-
icy [22], [23], [24]. The disturbance acts as an adversary
attempting to drive the system into unsafe regions, while
the controller learns to maintain safety. ISAACS trains both
players jointly via soft actor-critic methods and leverages
the learned value function to implement a runtime safety
filter. If the current task policy selects an unsafe action, the
safety filter can override it with a robust fallback generated
from the learned safety policy. This framework enables real-
time safety assurance in high-dimensional systems. However,
ISAACS relies on actor-critic style sampling to learn the
value function, which can be unstable or sample-inefficient
in complex domains. Additionally, it prioritizes robustness
against adversarial disturbances by optimizing the distur-
bance policy given a control policy, and has primarily
been applied to worst-case disturbance scenarios, rather than
general two-player games.

Organization: We begin in Section II with a brief
overview of Hamilton-Jacobi (HJ) reachability analysis and
the computation of backward reachable tubes (BRTs). In
Section III, we introduce the proposed MADR: MPC-guided
Adversarial DeepReach framework and detail the algorithmic
approach for learning reachability solutions under adversarial
MPC supervision. Section IV presents simulation results
demonstrating the effectiveness of MADR, followed by hard-
ware deployment results in Section V. Finally, we summarize
our findings and contributions in Section VI.

II. PRELIMINARIES

A. Problem Formulation
We consider a dynamical system with state x ∈ Rn,

control input u ∈ U , and disturbance (or adversary) d ∈ D,
governed by control-and-disturbance affine dynamics

ξ̇(t) = f(ξ(t)) + g(ξ(t))u(t) + w(ξ(t))d(t), (1)



where u : T → U and d : T → D are time-varying control
and disturbance signals. Here, U and D denote compact
sets of admissible control and disturbance inputs, defined
by physical or operational constraints. Let Player I choose u
while Player II chooses d.

In this setting, Player I seeks to avoid entering a failure
set F ⊂ Rn, despite the opposing actions of Player II.
This failure set is the set of states that Player I must avoid
to remain safe. This can include situations such as being
captured by Player II, or colliding with obstacles. Conversely,
Player II acts adversarially to drive the system toward F .
This interaction defines an avoid game, where the objective
of Player I is to maintain safety over a finite time horizon
T = [t, T ].

Throughout this work, we solve such games by character-
izing the safe set S ⊂ Rn: the set of states from which Player
I can guarantee safety against the worst-case disturbance
within the specified horizon.

B. Hamilton–Jacobi Formulation

To characterize the safe set and corresponding robust
control policy, we begin by defining a boundary function
that defines the failure set F ⊂ Rn = {x : ℓ(x) ≤ 0}. This
is typically constructed as a signed distance function to the
failure set. The objective function is defined as

J(x, t,u,d) = min
s∈[t,T ]

ℓ
(
ξu,dx,t (s)

)
, (2)

where ξu,dx,t (·) denotes the system trajectory starting from x
at time t and state x.

The value function V (x, t) encodes the safety of each
state under worst-case disturbances and optimal control by
optimizing over (2). It is defined as

V (x, t) = min
d[u]∈Ξ

max
u∈U

J(x, t,u, d), (3)

where d[u] : U → D denotes a nonanticipative strategy such
that Player II may choose to play d based on the current and
past values of the control u, but not on its future values.

A positive value V (x, t) > 0 indicates that the robot
starting from state x at time t can avoid entering the failure
set under all admissible disturbances. Therefore, the safe set
at time t is given by

S(t) = {x ∈ Rn |V (x, t) > 0}. (4)

The value function is computed by solving a
Hamilton–Jacobi-Isaacs variational inequality (HJI-VI):

min
{∂V

∂t
(x, t) + max

u∈U
min
d∈D
∇V (x, t) · f(x),

ℓ(x)− V (x, t)
}
= 0, V (x, T ) = ℓ(x).

(5)

The variational inequality ensures that once a state enters
the failure set, it remains marked as unsafe for all earlier
times, thus correctly capturing the avoid for all time game
objective. Grid-based methods can compute the exact value
function but quickly become intractable in high-dimensional
systems. To address this, we use a semi-supervised learning

̂VB = min
t

ℓ(ξuπ, ̂d*)

ξuπ, ̂d*

̂d* ∥ SB-MPC
uπ ∥ arg max

u (−Vθ ← g(x)u){ ̂u* ∥ SB-MPC{
Σcombined = ∇Vθ ⋅ ̂VB∇2 + ∇Vθ ⋅ ̂VA∇2 + min {DtVθ + H(x, t), L(x) ⋅ Vθ} 2

dπ ∥ arg min
d (−Vθ ← w(x)d)

̂VA = min
t

ℓ(ξû*,dπ)

ξû*,dπ

Fig. 2: Graphical depiction of the MPC formulation combining both
player’s rollouts in the loss function for the proposed MPG-guided
adversarial PINN training.

approach (see Section III) to approximate the value function,
preserving the key properties of the BRT while remaining
computationally feasible.

C. Online Control Using the BRT

Once the value function is computed offline, its gradients
can be used online by each player to determine optimal
control actions. Specifically, the evader (safety-maximizing
player) chooses u∗(x, t) = argmaxu∈U ∇V (x, t) · g(x)u.

The disturbance / pursuer (adversary) chooses d∗(x, t) =
argmind∈D∇V (x, t) ·w(x)d, with g(x) and w(x) from (1).
The sign of the gradient ∇xV along these directions deter-
mines whether increasing or decreasing the input increases
safety. These rules allow real-time control by evaluating the
gradient of the precomputed value function, avoiding the
need to solve HJ-PDE describing the optimal control problem
online. Optionally, this value function can act directly as
a safety filter [25], constraining control inputs to prevent
entering unsafe regions under disturbances.

III. ADVERSARIAL MPC-GUIDED REACHABILITY
LEARNING FRAMEWORK

Building on the Hamilton–Jacobi reachability concepts
introduced above, we present a framework for learning
the value function in high-dimensional systems subject to
adversarial inputs. Rather than solving (5) over a grid, our
approach leverages self-supervised learning of the HJI-VI
loss, enhanced with a supervised adversarial sampling-based
MPC procedure that is generated in parallel to efficiently
approximate the value function. We will first introduce
the sampling-based MPC method that optimizes the objec-
tive (2). Then we describe how this dataset will be used
to augment the training loss of DeepReach. These losses
are combined, as illustrated in Fig 2, to guide the learned
value function toward robust, safety-informed behavior in
adversarial scenarios.

A. Sampling-Based MPC Dataset

To generate the MPC dataset, we solve the following
discrete-time version of the zero-sum game:

V̂ (x, t) = min
d

max
u

min
h∈{0,1,...,H}

ℓ (ξh)

s.t. ξh+1 = f̄(ξh) + ḡ(ξh, uh) + w̄(ξh dh),

ξ0 = x, uh ∈ U, dh ∈ D.

(6)



Algorithm 1 Sampling-based MPC dataset [Control Perspec-
tive] [Disturbance Perspective]
Input: MPC dataset size |DMPC|, horizon H , step size

∆t, dynamics model f , learned value function Vθ,
constraint function ℓ, sample size N , refinement
iterations K

Output: DMPC = {(xj , tj , V̂ (xj , tj))}
Initialization: Set best cost J∗ ← −∞ J∗ ←∞ DMPC = ∅
for j ← 1 to |DMPC| do

xj ∼ Uniform(X ), tj ∼ Uniform(0, T )
for k ← 1 to K do

for i← 1 to N do
x
(i)
0 ← xj

for h← 0 to H − 1 do
u(i) ∼ N (µu, σ

2
u)

d(i) ← argmind∇Vθ(x
(i)
h ) · w(x(i)

h )d

u(i) ← argmaxu∇Vθ(x
(i)
h ) · g(x(i)

h )u
d(i) ∼ N (µd, σ

2
d)

x
(i)
h+1 = x

(i)
h +

f̄ (x(i)
h )∆ + ḡ(x

(i)
h , u(i))∆ + w̄(x

(i)
h d(i))∆

J (i) = min
h

ℓ(x
(i)
h ) if H < T then

V
(i)

togo ← Vθ(x
(i)
H ) J (i) ← min{J (i), V

(i)
togo}

Update best cost: if J (i) > J∗ J (i) < J∗ then
µu ← u(i) µd ← d(i) J∗ ← J (i)

V̂ (tj , xj)← J∗

return DMPC ← DMPC ∪ (xj , tj , V̂ (xj , tj))

Here h ∈ {0, 1, . . . ,H} denotes the time steps between t
and T, ξ is the system trajectory, u := [u0, · · · , uH ] is the
control sequence, and d := [d0, · · · , dH ] is the disturbance
sequence. The functions f̄, ḡ, w̄ are the discretized dynamics
that can be obtained from the continuous dynamics using
first-order Euler approximation. This game can be solved in
many ways; we will use sampling-based MPC (SB-MPC).
Directly solving the resulting two-player game using MPC
is challenging due to the need for co-optimization over both
control and disturbance sequences. Instead, we generate two
distinct datasets—one with SB-MPC controlling the agent
while the disturbance follows a policy, and one with the roles
reversed—allowing efficient learning of the value function.
In practice, we generate two complementary datasets: 1) SB-
MPC for control combined with policy-driven disturbance
rollouts, and 2) policy-driven control combined with SB-
MPC disturbance rollouts. Our MPC algorithm is summa-
rized in Alg. 1 and described below.

1) Control Dataset: We first review how to generate the
MPC dataset for the control input, shown in black and blue
text. The algorithm takes as inputs the MPC dataset size,
|DMPC |, time horizon H and step size ∆t, dynamics model
f , current learned value function Vθ, constraint function ℓ,
number of trajectories N and number of refinement iterations
K. We first uniformly sample states from the state space

X and times from the time horizon T. Over the course
of K refinement iterations, we then generate N trajectories
starting at the sampled initial state x0. For each timestep
∆t over a horizon H , we first generate the control input
by sampling a Gaussian distribution around a nominal mean
control µu and variance σ2

u, both defined by the user. In
practice, this is typically set to µu = 0 and the variance is set
to the maximum control bound. The robot then samples the
disturbance by taking the action that minimizes the gradient
of the current learned value function. The state, control, and
disturbance are then propagated over ∆t via the dynamics.

Next, the objective function is set as the minimum of the
constraint function over the trajectory. If the horizon H is less
than the total time horizon, the robot takes the min between
the objective and the value function evaluated at the end of
the horizon H (i.e. cost-to-go). Finally, we update the best
solution by making the new nominal control the best control
action that we sampled so far. After all refinement steps, the
value function estimate at the initial state is set to the highest
cost of all rollouts.

2) Disturbance Dataset: To generate the MPC dataset for
the disturbance, we follow the same algorithm but using
the red text rather than the blue. The disturbance is now
generated by sampling from a Gaussian distribution around a
nominal mean disturbance µd and variance σ2

d, also defined
by the user. The robot then samples the control by taking
the action that maximizes the gradient of the current learned
value function. At the end of all refinement steps, the initial
state’s value function’s estimate is set to the lowest cost of
all rollouts.

These two datasets provide supervised learning signals for
DeepReach with the following loss for both:

LMPC =

|DMPC|∑
j=1

lMPC(xj , tj , V̂ (xj , tj); θ)

lMPC(x, t, V̂ (x, t); θ) = ∥V̂ (x, t)− Vθ(x, t)∥2,

(7)

with LMPC = LMPC,u+LMPC,d combining the sampling-based
rollouts from the control and disturbance perspective.

Remark 1: In addition to sampling-based MPC, standard
Model Predictive Path Integral control (MPPI) could also
be used to generate these datasets by sampling stochastic
rollouts. Within our codebase, the user can select either SB-
MPC or regular MPPI as the guiding policy; however, in
practice, we use SB-MPC, which assigns full weight to the
best rollout to approximate optimal control under uncertainty.

B. Learning Value Function using MPC-Guided DeepReach

To guide the learning of the value function, we directly
use lines 5-16 of Algorithm 2 in [9]. This approach leverages
a dataset of MPC rollouts together with PDE-based super-
vision to train a value function network that is amenable
to disturbances. We briefly review key components of [9],
Algorithm 2, highlighting key differences.

Firstly, as the MPC dataset collection, Alg. 1, relies on the
gradient of the estimated value function we do not consider



a pretraining phase and collect the first MPC dataset after a
set period of the curriculum training.

Next, Algorithm 2 of [9] relies on collecting data iter-
atively over a horizon that terminates at the current time
in the curriculum tcurr (hence starts from a time further in
the curriculum). We employ the same technique but fix the
evaluation of the learned value function’s gradient to be
evaluated at time tcurr to remain in distribution with respect
to the curriculum training.

C. A special pursuit-evasion filter for suboptimality in long-
horizon games

For two-player games with equally equipped agents, the
value function is positive (safe for the evader) for the major-
ity of the state space. Specifically, the pursuer’s objective is
to minimize the minimum cost over a pre-specified horizon,
assuming an optimal evader. As such, as the time-horizon
increases, and the error of a learned system compounds, the
approximated solution quality tends to deteriorate and erode
pursuer performance.

Therefore, we propose endowing the pursuer with a second
policy as a filter, which prioritizes staying close to the evader
when unable to “catch” the evader and switch to the classic
pursuit-evasion policy when a “catch” is achievable. The
“following” game has the following cost function:

Jfollow(x, t,u,d) = max
s∈[t,T ]

ℓ
(
ξu,dx,t (s)

)
, (8)

and the associated value function is:

Vfollow(x, t) = min
d[u]∈Ξ

max
u∈U

Jfollow(x, t,u,d). (9)

This formulation is akin to [3], which considers a worst-
case tracking bound between two systems. While the re-
sulting policy for the evader is not necessarily performant
(e.g., it might be optimal under this policy for the evader
to reach a state x with ℓ(x) < 0 during the trajectory
if this trajectory achieves a higher cost J over the full
trajectory), the policy for the pursuer tries to minimize the
maximum boundary function, i.e. distance, over a trajectory.
Such a policy induces the pursuer to stay close to the evader,
but does not prioritize “catching” the evader. As such, we
introduce a filtered strategy for the pursuer:

d(x) =

argmax
d

Hd if |Hdd| ≥ ϵ

argmax
d

Hd,follow,
(10)

where Hd = ∇Vθ(x, T ) · w(x)d and ϵ≪ 1. We denote this
policy as MADR-FOLLOW for the pursuer.

IV. SIMULATION RESULTS

A. Simulation Performance Evaluation Metrics

We benchmark our proposed approach against a set of
baselines and evaluate performance across all case studies.
The primary baselines and evaluation aspects include:

Baselines: Vanilla DeepReach [5], DP Grid-Based Meth-
ods [?], ISAACS [22], sampling-based MPC [26], and our
Adversarial MPC-Guided Policies (MADR).

Fig. 3: Representative trajectory rollouts comparing MADR and
ISAACS in the 13D quadrotor environment under wind distur-
bances. The solid lines correspond to MADR, while the dashed
lines correspond to ISAACS.

Metrics: Recovered volume and IOU with ground truth
for safe/unsafe regions and policy matchup tables: time-to-
capture and capture rate under adversarial disturbances for
evader/pursuer policy pairs.

These metrics enable a comprehensive assessment of the
strength of MADR, demonstrated by highly comparable per-
formance to the ground truth solution (for low-dimensional
settings) and outcompeting existing baseline’s learned poli-
cies across all experiments.

B. Implementation Details

For all baselines, we employ a three-layer sinusoidal
neural network, a standard architecture in machine learning
for capturing complex, high-frequency functions, with 512
neurons per layer. The networks are trained using the Adam
optimizer with a learning rate of α = 2 × 10−5 on an
NVIDIA GeForce RTX 4090 GPU. The sampling-based
MPC method uses a time step of ∆ = 0.02s and 10
iterative sampling steps, with N = 100 perturbed control
sequences are generated per step. The fine-tuning loss weight
λFT = 100 and the dataset refinement horizon HR = 0.2s
for all experiments.

In each case study, we use the same number of training
iterations across all baselines to ensure a fair comparison.
However, Vanilla DeepReach does not involve a fine-tuning
phase, see [9], as we observe that fine-tuning encourages
overfitting in these baselines and degrades their performance.
Detailed training parameters are provided in Table I.

TABLE I: Training time, number of epochs, and MPC dataset size
for MADR across different systems.

Baseline / System Training Time (hrs) Epochs MPC Dataset Size
Quadrotor (13D) 4.2 110,000 10,000
Dubins (6D) 3.6 150,000 20,000
Drones (20D) 5.4 250,000 30,000

C. 13D Quadrotor with Disturbances

We first consider a robustness scenario, simulating a
full 13-dimensional, quaternion-based quadrotor under wind
disturbances, including forces along the x, y, and z axes and
torques about the rotational axes. The drone must avoid a
central pillar of radius 0.50 in the state space despite a high
initial velocity.



Fig. 4: Distribution of actual–predicted cost differences and safe
rates over 100,000 trajectories, comparing MADR and ISAACS
based on their value functions. Negative values indicate overesti-
mation of safety.

Figure 3 shows representative trajectory rollouts as the
drone approaches the cylinder at high initial speeds, il-
lustrating the effectiveness of MADR. Even under worst-
case disturbances, our method consistently avoids the central
pillar, whereas ISAACS fails in some cases. Figure 4 presents
the distribution of actual versus predicted trajectory costs
for ISAACS and MADR, highlighting each method’s safety
estimation. MADR achieves a 98.9% safe rate compared with
86.6% for ISAACS and provides significantly more accurate
value function estimates, rarely overestimating safety.

D. 6D Dubins Pursuit Evasion Game

We then consider a zero-sum game for which we can
obtain a ground truth comparison using dynamic program-
ming (DP). Namely, we consider a Dubins pursuit–evasion
game in which each player is described by three states: x, y,
and θ. The evader aims to escape the pursuer, which has a
capture radius of 0.36, based on TurtleBot size. The players
are constrained to a bounded state space of [−3, 3] in x and
[−2, 2] in y. Both players have a maximum turn rate of 1.9
rad/s and move at a constant velocity of 0.5 m/s. All methods
are trained for a time horizon of 3 seconds.

Fig. 5: TurtleBot hardware trajectories from one initial condition,
showing qualitative differences across policies. Non-capture trajec-
tories are truncated.

Capture rates for each evader–pursuer policy pairing are
summarized in Table III. As shown in the table, MADR per-
forms near DP-optimal, significantly outperforming Vanilla
DeepReach and ISAACS. Additionally, Table II compares
each method’s unsafe set volume and Intersection-over-
Union (IOU) with the ground-truth value function, demon-
strating that MADR comes within 0.03% of the ground-
truth solution. It maintains a slightly conservative unsafe set
while outperforming ISAACS and Vanilla DeepReach in both
accuracy and safe estimation.

TABLE II: Comparison of methods: unsafe set volume within
x ∈ [−1.5, 1.5], y ∈ [−1.5, 1.5] and Intersection-over-Union (IOU)
with DP ground truth. Higher IOU indicates better recovery of the
true backward reachable tube (BRT).

Method Unsafe Set Volume (%) IOU with Ground Truth (DP)
DP (True BRT) 7.51 1.000
MADR (Ours) 7.82 0.997
Vanilla 4.60 0.969
ISAACS 0.37 0.928

TABLE III: Capture rates (%) over 100 safe initial states (0 <
V < 0.1) based on the DP BRT ground truth. Rows correspond to
Player I’s policy and columns to Player II’s policy. Cells are color-
coded to highlight performance: blue indicates a stronger Evader,
while red indicates a stronger Pursuer.

Evader (↓)
Pursuer (↑) DP MADR-FOLLOW MADR Vanilla Isaacs

DP 10 6 10 0 6
MADR 17 13 17 1 7
Vanilla 71 70 58 45 63
Isaacs 60 56 55 20 32

E. 20D Drone Pursuit–Evasion Game

In this scenario, we consider a drone pursuit–evasion
game, where each drone is described by 10 states as de-
tailed in [8]. The evader’s capture boundary is defined by a
halfellipse centered under the pursuer to represent the evader
trying to avoid the downwash from the pursuer, similar
to [27]. All policies are trained over a 1-second time horizon.
The players are constrained to a bounded state space of
x ∈ [−4, 4], y ∈ [−2, 2], and z ∈ [0.2, 2.0]. Each drone
has identical dynamics, with a maximum desired pitch/roll
angle of 0.15 rad, maximum thrust of 14 N, and maximum
linear and angular velocities of 2.0 m/s.

Table IV reports capture rates for each policy combination
over 100 rollouts from random initial states. As illustrated,
our evader successfully avoids capture from all policies
except our own pursuer, while capturing all other policies.
Moreover, the evader policy consistently outperforms all
competing policies, and our pursuer performs comparably
to MPC.

TABLE IV: Capture rates (%) for each evader–pursuer policy
pairing in the 20D pursuit–evasion drone game, averaged over 100
rollouts from random initial conditions with a 3-second horizon.

Evader (↓)
Pursuer (↑) MADR-FOLLOW MPC Vanilla MADR

MADR 7 1 0 4
MPC 25 29 21 21

Vanilla 9 11 8 10



Fig. 6: A hardware demonstration of the drone vs. drone pursuit-evasion game with MADR. From left to right, four trajectory snapshots
show the position of the evader (blue) and the pursuer (red) up to that time point with captures or out-of-bounds (OOB) marked by an
’x’ (black). Both agents employ our proposed policy, with the pursuer using the follow-filtered augmentation.

V. HARDWARE RESULTS

Having validated our approach in simulation (Section IV),
we now evaluate its performance on the physical platform.
This section presents experiments using hardware to assess
real-world scalability.

A. 6D Dubins Pursuit Evasion Game

To evaluate our approach in hardware, we implemented the
6D Dubins pursuit–evasion game on a pair of TurtleBots. Un-
like the simulation studies (see Section IV-D), which focused
on short horizons of 3 seconds, the hardware experiments
probe longer-term behavior and robustness. In particular, we
consider rollouts lasting up to 500 seconds, allowing us to
assess whether value functions learned over short horizons
remain effective for longer-horizon interactions, capturing
stability effects and strategic patterns that are not visible in
brief simulations.

Quantitative results on time to capture are reported in
Table V, with representative trajectories highlighting qual-
itative differences in strategy shown in Figure 5. As shown,
our policy significantly outperforms Vanilla DeepReach and
achieves performance comparable to DP optimal, with sim-
ilar times to capture. The trajectories further demonstrate
long-term planning on the pursuer side, successfully corner-
ing evaders. Despite the short-horizon learned value function,
our method produces meaningful results even over 500-
second experiments.

TABLE V: Average time-to-capture (seconds) for each
evader–pursuer policy pairing, evaluated over six selected
initial states with large relative separation.

Evader (↑)
Pursuer (↓) DP MADR MADR-FOLLOW Vanilla

DP 31.1 84.0 37.1 355.0
MADR 14.8 53.8 25.5 243.5
Vanilla 11.0 11.3 7.6 71.7

B. 20D Drone Hardware Platform

To ground the 20D pursuit–evasion formulation in a
realistic setting, we implement our framework on a pair
of Crazyflie 2.1 quadrotors, each modeled with the 10-
dimensional state space (See Section IV-E).

All neural network queries are performed offboard on a
workstation. The Crazyflies receive only low-level combined
thrust and desired attitude commands via a wireless link

at 50 Hz. For precise localization during experiments, the
drones operate in a motion-capture arena providing real-time
position and velocity measurements, which is fused with the
internal IMU to provide full-state observability.

Each Crazyflie uses its onboard PID-based attitude con-
troller to track the commanded thrust and torques. The
actuation limits are consistent with the Crazyflie hardware:
maximum thrust of approximately 15 N per rotor, roll and
pitch angles constrained to ±0.15 rad, and angular velocity
limits of 2.0 rad/s.

We plot a representative roll-out, showcasing long horizon
behavior in Figure 6. We compared the standard pursuit-
evasion MADR policy to MADR-FOLLOW, finding that
across near and distant initial positions MADR-FOLLOW
achieved capture for 26.4% of the 3-minute trajectory on
average versus 11.6% for MADR. Qualitatively, both poli-
cies induce diving attacks and dodge evasions (pictured in
Figure 1) but the follow-filtered pursuit manages to recover
better from distant points. See the supplemental for the
trajectory videos.

C. Humanoid–Drone Pursuit–Evasion Experiments

To interrogate the robustness of our method, we conducted
an experiment facing MADR against a Unitree G1 humanoid
driven by a human-operator. In this game, we model the hu-
manoid with quadrotor-like dynamics, although the opponent
is weaker in reality due to its dynamic limitations, but one
which we consider conservatively. A Crazyflie mounted on
the humanoid provided state estimation via motion capture,
while the aerial drone agent executed the MADR-FOLLOW
strategy for the pursuer role and MADR for the evader role.

Two of six example trajectories are plotted in Figure 7,
and the full videos may be found in the supplemental. In the
pursuit case, the drone autonomously follows the rear of the
humanoid and at another point rapidly lunges at its abdomen
(pictured in the top of Figure 7). In the evader case, the
drone frequents the lower heights, tending to “side-step” the
approaching humanoid, but is occasionally knee’d (pictured
in the bottom of Figure 7).

VI. CONCLUSIONS

In this work, we proposed MADR, a robust learning
framework that augments the DeepReach process with su-
pervision from adversarial model predictive control (MPC).
By leveraging worst-case control–disturbance interactions as



Fig. 7: Two hardware demonstrations of the teleoperted humanoid
vs. MADR drone pursuit-evasion game. On top, the teleoperated
humanoid evades, while on bottom, it pursues. In either case, the
position of the evader (blue) and the pursuer (red) are plotted with
captures marked by an ‘x’ (black).

expert guidance, MADR enables accurate approximation of
Hamilton–Jacobi (HJ) reachability solutions and backward
reachable tubes (BRTs) in the presence of both disturbances
and adversarial agents. Our results highlight two key contri-
butions. First, we show that MADR scales effectively across
a range of dynamical systems and dimensions, and validate
its practicality through both simulation and hardware experi-
ments. Second, we demonstrate that MADR robustly handles
diverse disturbance types, from structured environmental
effects to two-agent zero-sum games. Together, these results
underscore MADR’s potential for real-world deployment in
safety-critical autonomous systems, where reliable decision-
making under uncertainty is essential.
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