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- We demonstrate potential benefits of deep RL to train active control to pitching angular acceleration and
extract maximum power from an oscillating hydrofoil . power coefficient (Cp)
- Training relies on a low-dimensional model of the environment, which -
greatly improves time of training compared with model-free RL _ _1 _1 _3 B o &
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Comparison between the implemented MBRL structure and typical model- s . Autoencoder Vorticity Reconstruction
free RL structure. MBRL structure is shown as solid lines, typical model-free s Solid shapes represent the true vorticity while hollow shapes show
structure shown as dashed lines 0 TPMTI'T;;’z)eBTpM To _25‘ 5 125&)2 the autoencoder reconstruction, with two test cases shown
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